Extensions 1→N→G→Q→1 with N=C32×C3⋊S3 and Q=C3

Direct product G=N×Q with N=C32×C3⋊S3 and Q=C3
dρLabelID
C3⋊S3×C3354C3:S3xC3^3486,257

Semidirect products G=N:Q with N=C32×C3⋊S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×C3⋊S3)⋊1C3 = C34⋊C6φ: C3/C1C3 ⊆ Out C32×C3⋊S3186(C3^2xC3:S3):1C3486,102
(C32×C3⋊S3)⋊2C3 = C32×C32⋊C6φ: C3/C1C3 ⊆ Out C32×C3⋊S354(C3^2xC3:S3):2C3486,222
(C32×C3⋊S3)⋊3C3 = C3⋊S3×He3φ: C3/C1C3 ⊆ Out C32×C3⋊S354(C3^2xC3:S3):3C3486,231

Non-split extensions G=N.Q with N=C32×C3⋊S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×C3⋊S3).1C3 = C3×C32⋊C18φ: C3/C1C3 ⊆ Out C32×C3⋊S354(C3^2xC3:S3).1C3486,93
(C32×C3⋊S3).2C3 = C34.C6φ: C3/C1C3 ⊆ Out C32×C3⋊S3186(C3^2xC3:S3).2C3486,104
(C32×C3⋊S3).3C3 = C3⋊S3×3- 1+2φ: C3/C1C3 ⊆ Out C32×C3⋊S354(C3^2xC3:S3).3C3486,233
(C32×C3⋊S3).4C3 = C3⋊S3×C3×C9φ: trivial image54(C3^2xC3:S3).4C3486,228

׿
×
𝔽